

Travaux pratiques – Utilisation de Wireshark pour observer la connexion TCP en trois étapes

Topologie de Mininet

Objectifs

- Partie 1 : Préparer les hôtes pour la capture du trafic
- Partie 2 : Analyser les paquets à l'aide de Wireshark
- Partie 3 : Afficher les paquets à l'aide de tcpdump

Contexte/scénario

Au cours de ces travaux pratiques, vous utiliserez Wireshark pour capturer et examiner les paquets générés entre le navigateur de l'ordinateur en utilisant le protocole HTTP (Hypertext Transfer Protocol) et un serveur web, tel que www.google.com. Lorsqu'une application, comme le protocole HTTP ou FTP (File Transfer Protocol) démarre d'abord sur un hôte, TCP utilise la connexion en trois étapes pour établir une session TCP fiable entre les deux hôtes. Par exemple, lorsqu'un ordinateur utilise un navigateur web pour naviguer sur Internet, une connexion en trois étapes est lancée et une session est établie entre l'ordinateur hôte et le serveur web. Un ordinateur peut avoir des sessions TCP actives, multiples et simultanées avec différents sites web.

Ressources requises

- Poste de travail virtuel CyberOps
- Accès Internet

Partie 1 : Préparer les hôtes pour la capture du trafic

- a. Démarrez la machine virtuelle CyberOps. Connectez-vous avec le nom d'utilisateur **analyst** et le mot de passe **cyberops**.
- b. Démarrez Mininet.

[analyst@secOps ~]\$ sudo lab.support.files/scripts/cyberops topo.py

c. Démarrez les hôtes H1 et H4 sur Mininet.

```
*** À partir de l'interface de ligne de commande :
mininet> xterm H1
mininet> xterm H4
```

d. Démarrez le serveur web sur H4.

```
[root@secOps analyst]#
/home/analyst/lab.support.files/scripts/reg_server start.sh
```

e. Démarrez le navigateur sur H1. Ce processus peut prendre quelques instants.

[root@secOps analyst]# firefox &

f. Une fois la fenêtre Firefox ouverte, démarrez une session tcpdump sur le terminal **Node: H1** et envoyez la sortie vers un fichier appelé **capture.pcap**. L'option -v affiche la progression du processus. Le processus de capture s'arrête après la capture de 50 paquets, car il est configuré avec l'option -c 50.

[root@secOps analyst]# tcpdump -i H1-eth0 -v -c 50 -w
/home/analyst/capture.pcap

g. Après le démarrage de tcpdump, accédez rapidement à 172.16.0.40 dans le navigateur Firefox.

Partie 2 : Analyser les paquets à l'aide de Wireshark

Étape 1 : Appliquez un filtre à la capture enregistrée.

a. Appuyez sur Entrée pour afficher l'invite de commande. Lancez Wireshark sur Node: H1. Lorsque le message d'avertissement s'affiche, cliquez sur OK pour confirmer l'exécution de Wireshark en tant que super utilisateur.

```
[root@secOps analyst]# wireshark-gtk &
```

- b. Dans Wireshark, cliquez sur **File** > **Open**. Sélectionnez le fichier pcap enregistré sous /home/analyst/capture.pcap.
- c. Appliquez un filtre tcp à la capture. Dans cet exemple, les 3 premières trames représentent le trafic d'intérêt.

Filter	Filter: tcp			•	Expression	Clear		Save			
No.	Time	Source	Destination	Protocol	Length	Info					
1	0.00000	10.0.0.11	172.16.0.40	TCP	74	58716 → 80	[SYN] Seq	=0 Win=292	00 Len=0	MSS=1460	SACK_PEF
2	0.000081	172.16.0.40	10.0.0.11	TCP	74	80 → 58716	[SYN, ACK] Seq=0 Ad	k=1 Win=2	8960 Len:	=0 MSS=14
3	0.000082	10.0.0.11	172.16.0.40	TCP	66	58716 → 80	[ACK] Seq	=1 Ack=1 W	/in=29696	Len=0 TS	val=38645
4	0.000194	10.0.0.11	172.16.0.40	HTTP	356	GET /favico	on.ico HTT	P/1.1			

Étape 2 : Examinez les informations au sein des paquets, y compris les adresses IP, les numéros de port TCP et les indicateurs de contrôle TCP.

- Dans cet exemple, la trame 1 correspond au début de la connexion en trois étapes entre l'ordinateur et le serveur sur H4. Dans le volet de la liste des paquets (section supérieure de la fenêtre principale), sélectionnez le premier paquet, le cas échéant.
- b. Cliquez sur la flèche à gauche du protocole TCP (Transmission Control Protocol) dans le volet de détails des paquets pour développer et examiner les données TCP. Localisez les informations sur les ports source et de destination.
- Cliquez sur la flèche à gauche des indicateurs. Une valeur de 1 signifie que l'indicateur est défini. Repérez l'indicateur défini dans ce paquet.

Remarque : vous devrez peut-être modifier la taille des fenêtres du haut et du milieu dans Wireshark pour afficher les informations nécessaires.

Quel est le numéro du port source TCP ?
Comment classifieriez-vous le port source ?
Quel est le numéro du port de destination TCP ?
Comment classifieriez-vous le port de destination ?
Quel indicateur est défini ? (plusieurs réponses possibles)
Sur quoi le numéro d'ordre relatif est-il défini ?

d. Sélectionnez le paquet suivant dans la connexion en trois étapes. Dans cet exemple, il s'agit de la trame 2. C'est la réponse du serveur web à la requête initiale de démarrage d'une session.

Filter:	tcp				-	Expression	Cle	ar		Save		
No.	Time	Source	Destination	Protocol	Length	Info						
1	0.000000	10.0.0.11	172.16.0.40	ТСР	74	58716 → 80	[SYN]	Seq=0	Win=292	00 Len=0	MSS=140	60 SACK_PEF
2	0.000081	172.16.0.40	10.0.0.11	ТСР	74	80 → 58716	[SYN,	ACK]	Seq=0 Ac	k=1 Win=	28960 Le	en=0 MSS=14
3	0.000082	10.0.0.11	172.16.0.40	ТСР	66	58716 → 80	[ACK]	Seq=1	Ack=1 W	1n=29696	Len=0	TSval=38645
4	0.000194	10.0.0.11	172.16.0.40	нир	300	GET /Tavico	00.100	HTTP/	1.1			
▶ Fram	ne 2: 74 byt	es on wire (5	92 bits), 74	bytes ca	otured (592 bits)						
▶ Ethe	ernet II, Sr	c: a2:86:17:7	c:c3:65 (a2:	B6:17:7c:	c3:65),	Dst: a6:al:	15:2c:	d8:de	(a6:a1:1	5:2c:d8	:de)	
▶ Inte	ernet Protoc	ol Version 4,	Src: 172.16	.0.40, Dst	t: 10.0.	0.11						
- Trar	ismission Co	ntrol Protoco	l, Src Port:	80, Dst	Port: 58	8716, Seq: 0), Ack:	1, Le	en: 0			
S	ource Port:	80										
	estination P	ort: 58/16										
	TCP Segment	len: 0]										
s	equence numb	er: 0 (rel	ative sequen	ce number)							
A	cknowledgmen	t number: 1	(relative	ack numbe	r)							
н	eader Length	: 40 bytes										
F	Flags: 0x012 (SYN, ACK)											
W:	Window size value: 28960											
[[Calculated window size: 28960]											
C	Checksum: 0xc85a [unverified]											
L	Checksum Sta	tus: Unverifi	Led]									
U	rgent pointe	r: 0				and the second		- 0-				1
▶ 0	ptions: (20	bytes), Maxin	num segment s	ize, SACK	permit	ted, limesta	amps, N	lo-Ope	ration (10P), Wi	ndow sca	ale

Quelles sont les valeurs des ports source et de destination ?

Quels sont les indicateurs définis ?

Sur quelle valeur les numéros d'ordre relatif et d'accusé de réception sont-ils définis ?

e. Enfin, sélectionnez le troisième paquet dans la connexion en trois étapes.

Filter:		tcp	-	Exp	ression	C	ear		S	ave					
No.	o. Time		Source	Destination	Protocol	Length	Info								
1	Θ.	000000	10.0.0.11	172.16.0.40	ТСР	74	5871	L6 → 80	[SYN]	Seq=0	Win=2	29200	Len=0	MSS=146	SACK_PEF
2	Θ.	000081	172.16.0.40	10.0.0.11	ТСР	74	80 -	→ 58716	[SYN,	ACK]	Seq=0	Ack=	l Win=2	28960 Le	n=0 MSS=14
3	Θ.	000082	10.0.0.11	172.16.0.40	тср	66	587]	L6 → 80	[ACK]	Seq=1	. Ack=1	l Win	=29696	Len=0 T	Sval=38645
4	Θ.	000194	10.0.0.11	172.16.0.40	HTTP	356	GET	/favic	on.ico	HTTP/	1.1				
<pre>> Fra > Eth > Int > Tra S D [[S A H F W [[[C C [U U </pre>	me ern our est Str TCP equ ckn ead lag find Cal Win hec Che rge	3: 66 byte et II, Sr et Protoce ission Co ission Co ce Port: ination P ream index Segment eence numb owledgmen er Length gs: 0x010 low size v culated w adow size ksum: 0xb scksum Sta ent pointe	es on wire (5 c: a6:a1:15:2 ol Version 4, ntrol Protoco 58716 ort: 80 : 0] Len: 0] er: 1 (rel t number: 1 : 32 bytes (ACK) alue: 58 indow size: 2 scaling facto 669 [unverifi tus: Unverifi r: 0	28 bits), 66 c:d8:de (a6: Src: 10.0.0 l, Src Port: 	bytes cap al:15:2c:d .11, Dst: 58716, D ce number ack numbe	ptured (d8:de), 172.16. st Port:) r)	(528 Dst: 0.40 : 80,	bits) a2:86: Seq: 1	:17:7c	:c3:65 : 1, L	(a2:8	6:17:	7c:c3:	65)	

Examinez le troisième et dernier paquet de la connexion.

Quel indicateur est défini ? (plusieurs réponses possibles)

Les numéros d'ordre relatif et d'accusé de réception sont définis sur 1 comme point de départ. La connexion TCP est désormais établie et la communication entre l'ordinateur source et le serveur web peut commencer.

Partie 3 : Afficher les paquets à l'aide de tcpdump

Vous pouvez également afficher le fichier pcap et appliquer un filtre pour obtenir les informations souhaitées.

a. Ouvrez une nouvelle fenêtre du terminal et saisissez **man tcpdump**. **Remarque** : vous devrez peut-être appuyer sur Entrée pour afficher l'invite.

Parcourez ou recherchez dans les pages de manuel fournies avec le système d'exploitation Linux les options pour sélectionner les informations souhaitées dans le fichier pcap.

```
[analyst@secOps ~] # man tcpdump
TCPDUMP(1)
                            General Commands Manual
                                                                   TCPDUMP(1)
NOM
       tcpdump - dump traffic on a network
SYNOPSIS
       tcpdump [ -AbdDefhHIJKlLnNOpqStuUvxX# ] [ -B buffer size ]
               [ -c count ]
               [ -C file size ] [ -G rotate seconds ] [ -F file ]
               [ -i interface ] [ -j tstamp type ] [ -m module ] [ -M secret ]
               [ --number ] [ -Q in|out|inout ]
               [-r file] [-V file] [-s snaplen] [-T type] [-w file]
               [ -W filecount ]
               [ -E spi@ipaddr algo:secret,... ]
               [ -y datalinktype ] [ -z postrotate-command ] [ -Z user ]
               [ --time-stamp-precision=tstamp precision ]
               [ --immediate-mode ] [ --version ]
               [ expression ]
<some output omitted>
```

Pour effectuer une recherche dans les pages de manuel, vous pouvez utiliser les symboles / (recherche vers le bas) ou ? (recherche vers le haut) pour rechercher des termes spécifiques, **n** pour afficher la correspondance suivante et **q** pour quitter la fenêtre de recherche. Par exemple, pour rechercher les informations concernant le commutateur -r, saisissez /r. Saisissez **n** pour afficher la correspondance suivante. Comment se comporte le routeur -**r** ?

 b. Sur le même terminal, ouvrez le fichier de capture à l'aide de la commande suivante pour afficher les 3 premiers paquets TCP capturés :

```
[analyst@secOps ~]# tcpdump -r /home/analyst/capture.pcap tcp -c 3
reading from file capture.pcap, link-type EN10MB (Ethernet)
13:58:30.647462 IP 10.0.0.11.58716 > 172.16.0.40.http: Flags [S], seq
2432755549, win 29200, options [mss 1460,sackOK,TS val 3864513189 ecr
0,nop,wscale 9], length 0
```

13:58:30.647543 IP 172.16.0.40.http > 10.0.0.11.58716: Flags [S.], seq 1766419191, ack 2432755550, win 28960, options [mss 1460,sackOK,TS val 50557410 ecr 3864513189,nop,wscale 9], length 0 13:58:30.647544 IP 10.0.0.11.58716 > 172.16.0.40.http: Flags [.], ack 1, win 58, options [nop,nop,TS val 3864513189 ecr 50557410], length 0

Pour afficher la connexion en trois étapes, vous devrez peut-être augmenter le nombre de lignes après l'option **-c**.

c. Accédez au terminal utilisé pour démarrer Mininet. Arrêtez Mininet en saisissant quit dans la fenêtre du terminal principale de la machine virtuelle CyberOps.

```
mininet> quit
*** Stopping 0 controllers
*** Stopping 2 terms
*** Stopping 5 links
.....
*** Stopping 1 switches
s1
*** Stopping 5 hosts
H1 H2 H3 H4 R1
*** Done
[analyst@secOps ~]$
```

 d. Une fois Mininet arrêté, saisissez sudo mn -c pour supprimer les processus démarrés par Mininet. Saisissez le mot de passe cyberops lorsque vous y êtes invité.

```
[analyst@secOps scripts]$ sudo mn -c
[sudo] password for analyst:
```

Remarques générales

1. Des centaines de filtres sont disponibles dans Wireshark. Un réseau de grande taille peut avoir de nombreux filtres et de nombreux types de trafic. Indiquez trois filtres qui pourraient être utiles à un administrateur réseau.

2. De quelles autres façons Wireshark pourrait-il être utilisé dans un réseau de production ?